We have the solution...

.the future has a name

aS

The high efficiency of the LUBCON lubricants is proven by

- Iong service life
- good running properties
 high operational reliability

TURMOGREASE® LI 802 EP for

- rolling bearings subject to high loads
- high temperatures up to +140 °C
- low up to high speeds
- low up to high bearing load
- the lubrication of various types and sizes of bearings

Advantages

- good protection against corrosion and ageing
- compatible with non-ferrous metals, NBR elastomers, PA 66-GF 25 plastics
- favourable noise behaviour
- good oxidation stability
- excellent load-carrying capacity
- suitable for application in critical types of rolling bearings
- service life of grease and the achievable bearing life is above average
- the multipurpose application allows to reduce the high number of different grease types actually used in many companies

The friction behaviour of small to medium-size deep groove ball bearings lubricated with **TURMOGREASE**[®] Li 802 EP is very good. Friction is generally low, the grease spreads within a relatively short time and grease losses in 2RSR bearings are comparatively low.

This grease meets the requirements of grease class J in accordance with FAG specifications, a fact proven in several tests.

Service temperature range: -35 °C up to +140 °C, short time up to +160 °C

Suitable for the following rolling bearings: Deep groove ball and cylindrical roller bearings Speed factor $n \cdot d_m (min^{-1} \cdot mm)$ up to 1 000 000 for P/C < 0.05 up to 1 000 for P/C < 0.5 up to +70 °C

Spherical and conical roller bearings Speed factor $n \cdot d_m$ (min⁻¹ · mm) up to 300 000 for P/C < 0.05 up to 1 000 for P/C < 0.3 up to +70 °C

Practical Application

This high-performance lubricating grease for high demands has successfully been used in construction machines, high-lifter trucks, tracklaying vehicles and also in spinning and grinding spindles. Furthermore, appliances and wheelset bearings exposed to high vibrations in rail vehicles and rotary stretchers are lubricated with this grease.

This brochure only contains product information. For specific information please refer to our technical data and safety data sheets. The indications made represent the present state of development and knowledge of **LUBRICANT CONSULT GMBH**. Subject to change. The products are subject to severe controls of manufacture and comply in full with the specifications set forth by our company, but due to the multitude of different influencing factors, we cannot assume any warranty for the successful application in each individual case.

Therefore, we recommend to perform field tests. We strictly refuse any liability.

Application in Rolling Bearings

Requirements

- proper bearing assembly
- sufficient lubricant quantity on all functional surfaces
- selection of appropriate rolling bearings (cage design and material, dimensional accuracy of the bearings and the surrounding components)
- Extremely low-speed bearings and their housings generally require a complete grease fill.
- At low and medium speeds (corresponding to $n \cdot d_m < 200\,000$ min⁻¹ · mm) the bearings have to be completely filled with grease, the adjacent housing space, however, only to such an extent that the grease emerging from the bearing can be incorporated easily.
- In case of higher rotational speeds the bearings should only be filled to 40 60 % of the free bearing space.

If the free space adjacent to the bearing is large, we recommend to use seals or shields to ensure that a sufficient grease quantity is retained in the bearing.

Relubrication Intervals

Relubrication quantities are indicated in **table 2**, **p. 5**. The relubrication interval t_f for favourable operating and ambient conditions is indicated in the **diagram 1**, **p. 5**. **Table 3**, **p. 5** shows the reducing factors f_1 to f_5 applicable in case of unfavourable operating and ambient conditions.

TURMOGREASE[®] Li 802 EP is a high-performance grease ensuring extended relubrication intervals: the upper limit of the wide curve shown in the **diagram 1**, **p. 5** is valid for this grease. To obtain the actual lubrication interval t_{fq} multiply the relubrication interval as given in the **diagramm 1** with the reducing factors:

$t_{fq} = t_f \cdot f_1 \dots f_5$

In case of extremely high loads, it is absolutely necessary to control the presence of grease in the bearing; if a grease deficiency occurs, the lubricating intervals have to be reduced. The technical data of this grease including information on compatibility with sealing and cage materials are listed on **table 1**, **p.4**.

Noise Test with FAG MGG 11

The noise behaviour was tested on an MGG 11 noise tester. The result (noise class II) is good, taking into consideration that the range from I to IV covers very good moderate results.

Determination of the Application Range

The upper limit of the service temperature range was derived from the result of the FAG FE9 test run according to DIN 51821 at +140 °C with an operating time of F_{50} = 200 hours, see diagram 2, p. 6.

A good standard grease on lithium base renders only a time of $F_{50} = 147 \text{ h}$ at a temperature of +120 °C. Therefore, the application temperature of **TURMOGREASE**[®] Li 802 EP is by 20 °C higher than that of a usual standard grease.

The lower temperature limit was deducted from the flow pressure at -35 $^\circ C$ specified in DIN 51805.

Owing to the low flow pressure of 1380 hPa as determined in the DIN test, relubrication is still possible at -35 °C.

The defined rolling bearing application range is based on results of the FAG FE8 test:

- At a low rotating speed and a high load the specified 500 operating hours were achieved without any failures and with only very little wear of bearing elements. This test was carried out with angular contact ball bearings at temperatures from +30 °C up to +40 °C as well as with taper roller bearings at a temperature of +60 °C. The detailed test results are shown in the diagrams 3 and 4, p. 7.
- The higher speed range was tested at speeds near the upper limit of the admissible speed factor using angular contact ball bearings at temperatures from +90 °C up to +120 °C, the result is shown in the **diagram 5**, **p. 8**, as well as taper roller bearings at +90 °C up to +120 °C, the result is shown in **diagram 6**, **p. 8**.

The test runs were evaluated by comparing the wear results with the requirements for lubricating greases of the FAG grease classification (= FAG specification).

For the evaluation it was decisive that the 500 hour tests were completed without failures and that wear was only moderate.

All test runs were repeated several times, i. e. the results can be considered reliable.

Even though these were short-period tests, they clearly showed that the suitability of **TURMOGREASE®** Li 802 EP for the indicated application range is above average.

Satisfactory operational results can be expected, when observing the indicated lubricating intervals. The test speed differed from the speed factor, due to the test bench; the higher speed factor was choosen as a result of referring field experiences.

Friction Behaviour

The friction behaviour was tested on an FAG R6 test rig. **Diagram 7**, **p. 9** shows the test results, whereby the quick distribution of grease is remarkable. This becomes obvious by the early reduction of friction over the running time.

The low friction in the steady-state condition and the moderate loss of grease show that this product is suitable for sealed and shielded bearings.

Technical Data	TURMOGREASE [®] Li 802 EP	proved acc. to
Colour	brown	
Thickener	Lithium soap	
Base oil viscosity +40 °C/+100 °C (mm ² /s)	Mineral/Synth. 85/12.5	DIN 51562
Drop point (°C)	190	DIN ISO 2176
Worked penetration 60 TT (mm/10)	265 - 295	DIN ISO 2137
Water resistance +90 °C	1 - 90	DIN 51807T1
SKF Emcor Corrosion protection	0 - 0	DIN 51802
Oxidation resistance 100 h/+100 °C (bar)	0.4	DIN 51808
Copper corrosion +120 °C	Rating 1	DIN 51811
Flow pressure at -35 °C (hPa)	1380	DIN 51805
Oil separation (% by wt.) +40 °C/+100 °C	approx. 3.5/6	DIN 51817
Content of solid matters, particles 25 µm (mg)	< 5	DIN 51813
Behaviour towards NBR elastomer, 7 days at +100 °C		
Change of Shore A hardness \pm 15 SAH	+2 SAH	DIN 53505
Tearing elongation 150 %	-19.8 %	DIN 53504
Change of volume max. \pm 10 %	-3.4 %	DIN 53521
PA66-GF25 42 days at +120 °C		
Tearing strength 130 N/mm ²	184 N/mm ²	DIN EN 61
Tearing elongation 2 %	+18.8 %	DIN EN 61
Impact tenacity 20 mJ/mm ²	-17.8 mJ/mm ²	DIN 53453

Table 1: Technical Data of TURMOGREASE® Li 802 EP

Diagram 1: Lubricating interval for favourable operating and environmental conditions

Type of bearing		k _f	Relubrication quantity m ₁ for w	eekly or annual
Deep groove ball bearing	single-row	0.9 1.1	relubrication intervals	
10 0	double-row	1.5	$m_1 = D \cdot E$	3 · x [g]
Angular contact ball bearing	single-row	1.6	Relubrication interval	x
Spindle bearing	double-row $\alpha = 15^{\circ}$	2 0.75	weekly	0.002
Spiridie bearing	$\alpha = 15$ $\alpha = 25^{\circ}$	0.9	monthly	0.003
Four-point contact bearing	a 20	1.6	annual	0.004
Spherical ball bearing		1.3 1.6		
Deep groove ball thrust bearing		5 6	Relubrication quantity m ₂ for extr	emely short relubrication
Angular contact ball thrust bearing do	ouble-row	1.4	intervals	
		1	m ₂ = (0.5 20	
			Relubrication quantity m ₃ before	starting reoperation after a
			standstill of severals years	0.01 [~]
Type of bearing		k _f	$m_3 = D \cdot B$	0.01 [g]
		3 3.5	V = free space in the bearing	
Cylindrical roller bearing	single-row double-row	3.5	π μ $(\mu^2 d^2)$	0-9 G [³]
	full-row	25	$\approx \frac{\pi}{4} \cdot B (D^2 - d^2) \cdot 1$	$0 - \frac{1}{7800}$ [m]
Thrust cylindrical roller bearing		90	d = diameter of the bearing bore	[mm]
Needle bearing		3.5	D = outer diameter of the bearing	
Conical roller bearing		4	B = bearing width [mm]	
Barrel-shaped roller bearing	$(\mathbb{N} \in \mathcal{I})$	10 7 9	G = bearing weight [kg]	
Spherical roller bearing without flange Spherical roller bearing with centre fla		9 9	Table 2: Relubrication quantities	
ophenical roller bearing with centre in	lige	012		
Influence of dust and moisture at the	e functional su	rfaces of	Influence of high loads	
the bearing				
moderate	f ₁	= 0.7 0.9	P/C = 0.1 0.15	$f_4 = 1$
strong	f ₁	= 0.4 0.7	$P/C = 0.15 \dots 0.25$	$f_4 = 0.7 \dots 1$
very strong	T ₁	= 0.1 0.4	P/C = 0.25 0.35 P/C = 0.35 0.45	$f_4 = 0.4 \dots 0.7$ $f_4 = 0.2 \dots 0.4$
Influence of impact leads wibrations	and accillation	20	$P/C = 0.33 \dots 0.43$ $P/C = 0.45 \dots 0.6$	$f_4 = 0.25 \dots 0.4$ $f_4 = 0.05 \dots 0.2$
Influence of impact loads, vibrations moderate		= 0.7 0.9	P/C = >0.6	$f_4 = < 0.05$
strong		= 0.4 0.7		4
very strong		= 0.1 0.4	Influence of current streaming th	rough the bearing
_	L		slight current	$f_5 = 0.5 \dots 0.7$ $f_5 = 0.1 \dots 0.5$
Influence of increased bearing temp	eratures		strong current	f ₅ =0.1 0.5
moderate (up to +85 °C)	f ₃	= 0.7 0.9		, , ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,
strong (up to +100 °C)	f ₃	= 0.4 0.7	Table 3: Reducing factors $f_1 \dots f_5$	tor untavourable operational
very strong (up to +130 °C)	T ₃	= 0.1 0.4	and environmental conditions	

FAG FE9 Test Run

Diagram 2:

FE9 test run with angular contact ball bearing 529689 (\geq 7206 B), assembly A, i. e. open bearing; axial load F_a = 1.5 kN; speed n = 6000 min⁻¹; temperature +140 °C

Lubrication with **TURMOGREASE**[®] Li 802 EP Grease service life of the bearings in h: determination in Weilbull diagram of F_{50} = 237 h; F_{10} = 185 h

Requirements acc. to FAG and DIN 51825 $\rm F_{50}$ = 100 h \rightarrow Evaluation: very good

6

FAG FE9 Test Run

Diagram 3:

FE8 test run with angular contact ball bearing 536050 (\ge 7312 B); axial load F_a = 80 kN; speed n = 7.5 min⁻¹; time of operation 500 h Lubrication with **TURMOGREASE®** Li 802 EP

Diagram 4:

FE8 test run with taper roller bearing 536048 (\triangleq 31312); axial load F_a = 50 kN; speed n = 75 min⁻¹; time of operation 500 h Lubrication with **TURMOGREASE**[®] Li 802 EP

Parameters	Test run 1	Test run 2	FAG requirement
Steady-state temperature in °C	29	37	s 30 40
Peak temperature in °C	37	45	30 40
Wear in mg of - the rolling elements - the cage - the inner ring - the outer ring Frictional behaviour over the time (see diagram left)	5/16 5/9 13/18 very smooth behaviour	8/11 6/7 14/17 very smooth behaviour	< 35 <100 Evaluation: very good

Parameters	Test run 1	Test run 2	FAG requirement
Steady-state temperature in °C	45	35	s 60
Peak temperature in °C	77	60	60
Wear in mg of - the rolling elements - the cage - the inner ring - the outer ring Frictional behaviour over the time (see diagram left)	18/23 52/69 15/13 13/13 Running- in not yet finished	24/25 44/47 32/28 16/13 Running- in almost finished	< 35 <100 Evaluation: very good

JBCOI

Parameters	Test run 1	Test run 2	FAG requirement
Steady-state temperature in °C	90	84	s ≤120
Peak temperature in °C	125	132	120
Wear in mg of - the rolling elements - the cage - the inner ring - the outer ring Frictional behaviour over the time (see diagram left)	6/7 1/8 2/6 Running- in not yet finished	0/0 0/0 0/0 Running-in finished, very smooth	< 35 <100 Evaluation: very good

Diagram 5:

FE8 test run with angular contact ball bearing 536050 TVP (\triangleq 7312 B with plastic cage); axial load F_a = 5 kN; speed n = 6000 min⁻¹; time of operation 500 h;

Lubrication with TURMOGREASE® Li 802 EP

Diagram 6:

FE8 test run with taper roller bearing 536048 (\triangleq 31312); axial load F_a = 10 kN; speed n = 3000 min⁻¹; time of operation 500 h Lubrication with **TURMOGREASE**[®] Li 802 EP

Parameters	Test run 1	Test run 2	FAG requirements
Steady-state temperature in °C	100	95	120
Peak temperature in °C	116	110	120
Wear in mg of - the rolling elements - the cage - the inner ring - the outer ring Frictional behaviour over the time (see diagram left)	14/11 15/11 4/4 1/2 Running- in finished	10/8 43/9 4/1 0/1 Running- in finished	< 35 <100 Evaluation: very good

R6 Test Run

Diagram 7:

R6 test run with deep groove ball bearing 6203.2ZR.C3; preservation of the test bearing with Fuchs TX 10A; axial load $F_a = 179$ N; radial load $F_r = 23$ N; speed n = 7500 min⁻¹; running time 10 h

Lubrication with TURMOGREASE® Li 802 EP

Steady-state temperature +28 ... +30 °C; peak temperature +40 °C; grease loss 50 mg

Lubricating Greases for Rolling Bearings

TURMOGREASE® Li 802 EP; often used lubricating grease for rolling bearings subject to high loads, proved successful for many applications. Modified versions with tailor-made formulations provide an extended range of performance for specific applications:

Special application	V ₄₀ (mm²/s)	Name of grease
Temperature -35 °C up to +140 °C, speed factor $n \cdot d_m(min^{-1} \cdot mm) \le 1000000$	85	TURMOGREASE [®] Li 802 EP
Temperature -25 °C up to +140 °C, water resistant, speed factor $n \cdot d_m (min^{-1} \cdot mm) \le 1 \ 000 \ 000$	85	TURMOGREASE [®] LC 802 EP
Favourable for impact loads, vibrations	200	TURMOPLEX [®] 2 MF
Favourable also for high impact loads, vibrations, temperature up to +170 °C	400 500	TURMOPLEX [®] BN 5002
Temperature up to +140 °C, water resistant, favourable for bearings with rolling outer ring	400 500	TURMOGREASE [®] CAK 4003
Favourable for extremely high impact loads	1000	TURMOPLEX [®] L 220

9

The World of the LUBCON[®] Lubricants

EUROPE

Austria

LUBRICANT CONSULT GMBH Office St. Gertraud GSM: +43-6644183187 Fax: +43-4352-720 64 E-mail: austria@lubcon.com www.lubcon.com

Belgium

Van Meeuwen Special Lubricants N.V. Tel.: +32-53-76 76 00 Fax: +32-53-21 52 03 E-mail: info@vanmeeuwen.be www.vanmeeuwen.com

Czech Republic

LUBCON s.r.o. Tel.: +420-577-34 36 18 Fax: +420-577-34 20 09 E-mail: czechrepublic@lubcon.com www.lubcon.com

Denmark

A.H. INTERNATIONAL A/S Tel.: +45-75-50 11 00 Fax: +45-75-50 20 21 E-mail: ahi@ahi.dk www.lubcon.dk

Finland

Jukka Majuri Oy Tel.: +358-3-515 41 26 Fax: +358-3-511 52 20 E-mail: jukka.majuri@lubcon.fi www.lubcon.fi

France

LUBCON FRANCE S.A.R.L. Tel.: +33-4-79 84 38 60 Fax: +33-4-79 84 38 61 E-mail: france@lubcon.com www.lubcon.com

Great Britain

LUBCON Lubricants UK Ltd. Tel.: +44-1943-601431 Fax: +44-1943-602645 E-mail: uk@lubcon.com www.lubcon.com

Italy LUBCON LUBRIFICANTI S.R.L. Tel.: +39-0111-97 03 964 Fax: +39-0111-97 03 974 E-mail: italia@lubcon.com www.lubcon.com

FUROPE

Netherlands

Van Meeuwen Smeertechniek B.V. Tel.: +31-294-49 44 94 Fax: +31-294-49 44 90 E-mail: info@vanmeeuwen.nl www.vanmeeuwen.com

Norway

NORIKO AS Tel.: +47-33-37 85 00 Fax: +47-33-37 85 01 E-mail: bww@noriko.no www.noriko.no

Poland

LUBCON POLSKA Sp. z o.o. Tel.: +48-81-7 21 68 30 Fax: +48-81-7 21 68 31 E-mail: polska@lubcon.com www.lubcon.com

LUBCON d.o.o. Tel.: +386-7-33 80 760 Fax: +386-7-33 80 763 E-mail: lubcon@lubcon.si www.lubcon.si

Spain

LUBRITEC, S.A. Tel.: +34-93-719 11 13 Fax: +34-93-719 12 57 E-mail: lubritec@lubritec.com www.lubritec.com

Sweden

Ringdahl Maskiner AB Tel.: +46-8-14 02 75 Fax: +46-8-41 14 170 E-mail: clas@ringdahl-maskiner.se Internet: www.ringdahl-maskiner.se

Switzerland

LUBCON Lubricant Consult AG Tel.: +41-44-8 82 30 37 Fax: +41-44-8 82 30 38 E-mail: swiss@lubcon.com www.lubcon.com

Turkey GEOCON Ltd. Şti. Tel.: +90-216-561 15 26 Fax: +90-216-561 11 87 E-mail: geocon@geocon.com.tr www.geocon.com.tr

EUROPE

Further Distributors Bulgaria Ireland Cyprus Greece Portugal Russia Hungary

NORTH AMERICA

United States

LUBCON Turmo[®]Lubrication, Inc. Tel.: +1-616-575-6034 Fax: +1-616-575-6062 Toll free US+CAN: 877-887-6658 E-mail: inquiry@lubconusa.com www.lubconusa.com

Further Distributors Mexico

SOUTH AMERICA

Brazil

Fuchs do Brasil S.A. Tel.: +55-11-4789-2311 Fax: +55-11-4789-2670 E-mail: fuchs@fuchsbr.com.br www.fuchsbr.com.br

Further Distributors Ecuador

AFRICA / MIDDLE EAST

FOCHEM International (Pty) Ltd. Tel.: +27-11-903-9720 Fax: +27-11-903-9730 E-mail: info@focheminternational.com

Further Distributors

Egypt Saudi Arabia Tunisia UAE Israel Iran Pakistan

ASIA/PACIFIC

Philippines LUBCON Lubricant Asia **Regional Headquarter** E-mail: apsales@lubcon.com

Further Distributors

ralia
gladesh
а
g Kong
nesia
n
g Kong nesia

Korea Malaysia New Zealand Singapore Taiwan Thailand Vietnam

LUBRICANT CONSULT GMBH

Lubricants - Lubrication Systems

Gutenbergstraße 13 · 63477 Maintal · GERMANY · P.O. Box 200 240 · 63469 Maintal · GERMANY Tel.: +49 6109/7650-0 • Fax: +49 6109/7650-51 • Email: webmaster@lubcon.com • www.lubcon.com